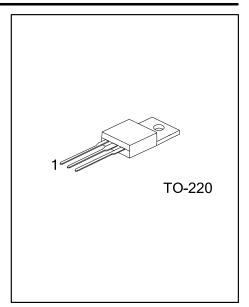


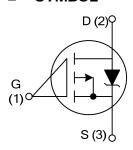
UNISONIC TECHNOLOGIES CO., LTD


UF9640 Preliminary Power MOSFET

11 Amps, 200 Volts P-CHANNEL POWER MOSFET

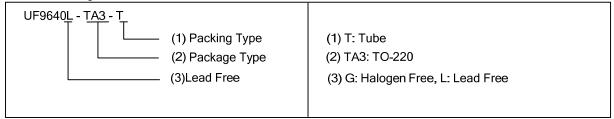
■ DESCRIPTION

The **UF9640** is a P-channel Power MOSFET that developed by UTC's advanced technlogy. The device hasan advantage of include fast switching, low on-resistance, ruggedized device design and low cost-effectiveness.


This type of package is generally applied in applications in the commercial-industrial field especially suitable for the power consumption at approximately 50W. Because of its low package cost and low thermal resistance, this package is widely applied in the industry field.

■ FEATURES

- * Fast switching speed
- * P-channel MOSFET
- * Repetitive avalanche rated
- * Simple drive requirements
- * Ease of paralleling


■ SYMBOL

■ ORDERING INFORMATION

Ordering Number		Deelsees	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UF9640L -TA3 -T	UF9640G -TA3 -T	TO-220	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 5

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Gate to Source Voltage		V_{GSS}	±20	V	
Avalanche Current (Note 1)		I_{AR}	-11	Α	
	Continuous		I_{D}	-11	Α
Drain Current		Pulsed (Note 1)	I _{DM}	-44	Α
Avalanche Energy	Single Pulsed (Note 2)		E _{AS}	700	mJ
	Repetitive (Note 1)		E_{AR}	13	mJ
Peak Diode Recovery dv/dt (Note 3)		dv/dt	-5.0	V/ns	
Power Dissipation		P_D	125	W	
Junction Temperature		T_J	+150	°C	
Storage Temperature		T_{STG}	-55 ~ +150	°C	

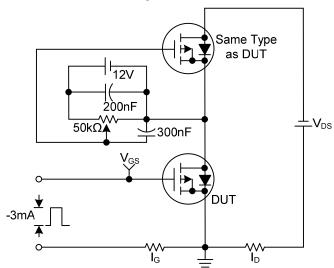
Notes: Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

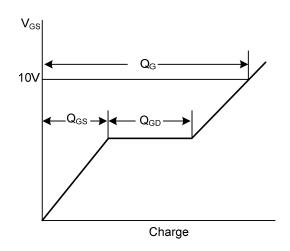
■ THERMAL DATA

PARAMETER	SYMBOL	TYP.	MAX.	UNIT
Junction-to-Ambient	θ_{JA}		62.5	°C/W
Junction-to-Case	θ_{JC}		1.0	°C/W

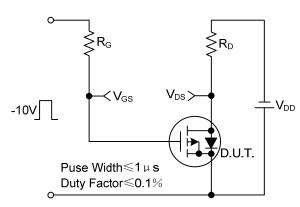
■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

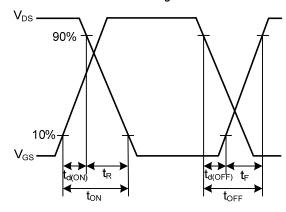

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS	1 01502	01 001151110110			.,,,,,,,	3
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =-250μA	-200			V
Breakdown Voltage Temp. Coefficient	$\Delta V_{(BR)DSS}/\Delta T_{J}$	I _D =-1mA, Referenced to 25°C		-0.20		V/°C
Drain-Source Leakage Current	I _{DSS}	V _{DS} =-200V, V _{GS} =0V			-100	μA
Coto Course Lookers Current Forward	I _{GSS}	V _{GS} =+20V			+100	nA
Gate-Source Leakage Current Reverse		V _{GS} =-20V			-100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=-250\mu A$	-2.0		-4.0	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-6.6A (Note 4)			0.50	Ω
Forward Transconductance	9 FS	V _{DS} =-50V, I _D =-6.6A (Note 4)	4.1			S
DYNAMIC PARAMETERS						
Input Capacitance	C _{ISS}			1200		рF
Output Capacitance	Coss	V_{DS} =-25V, V_{GS} =0V,f=1.0MHz		370		рF
Reverse Transfer Capacitance	C _{RSS}			81		рF
SWITCHING PARAMETERS						
Total Gate Charge	Q_G	V _{DS} =-160V, V _{GS} =-10V, I _D =-11A (Note4)			44	nC
Gate-Source Charge	Q_GS				7.1	nC
Gate-Drain Charge	Q_GD	ID1 IA (Note4)			27	nC
Turn-ON Delay Time	t _{D(ON)}			14		ns
Turn-ON Rise Time	t _R	V_{DD} =-100V, I_{D} =-11A, R_{G} =9.1 Ω ,		43		ns
Turn-OFF Delay Time	t _{D(OFF)}	R _D =8.6Ω (Note 4)		39		ns
Turn-OFF Fall Time	t _F			38		ns
Internal Drain Inductance	L _D	Between lead, 6mm (0.25in.)		4.5		nΗ
Internal Source Inductance	L _S	from package and center of die contact		7.5		nΗ
SOURCE- DRAIN DIODE RATINGS AND	CHARACTERIS	STICS				
Maximum Body-Diode Continuous Current	I _S				-11	Α
Maximum Body-Diode Pulsed Current	I _{SM}				-44	Α
Drain-Source Diode Forward Voltage	V_{SD}	I _S =-11A, V _{GS} =0V, T _J =25°C			-5.0	V
Body Diode Reverse Recovery Time	t _{RR}	I _F =-11A, T _J =25°C		250	300	ns
Body Diode Reverse Recovery Charge	Q _{RR}	dl/dt=100A/µs (Note 4)		2.9	3.6	μC
Forward Turn-On Time	t _{ON}	Intrinsic turn-on time is neglegibal (turn-on is dominated				

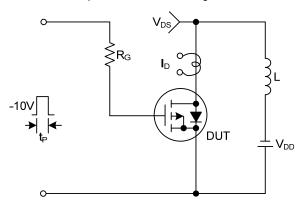
Notes: 1. Repetitive Rating: Pulse width limited by maximum junction temperature

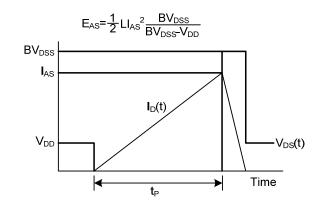

- 2. V_{DD} =-50V, Starting T_J =25°C, L=8.7mH, R_G =25 Ω , I_{AS} =-11A
- 3. $I_{SD} \le -11A$, di/dt $\le 150A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 150$ °C
- 4. Pulse Test : Pulse width≤300µs, Duty cycle≤2%

■ TEST CIRCUITS AND WAVEFORMS


Gate Charge Test Circuit


Gate Charge Waveforms


Resistive Switching Test Circuit


Resistive Switching Waveforms

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

